Vision inference
save_series_pred
def save_series_pred(
series_obj, save_dir, val:str='1234'
):
Saves series prediction with updated DICOM UIDs.
load_system_resources
def load_system_resources(
models_path, learner_fn, variables_fn
):
Load necessary resources like learner and variables.
inference
def inference(
learn_inf, apply_reorder, target_spacing, fn:(<class 'str'>, <class 'pathlib.Path'>)='',
save_path:(<class 'str'>, <class 'pathlib.Path'>)=None, org_img:NoneType=None, input_img:NoneType=None,
org_size:NoneType=None
):
Predict on new data using exported model.
compute_binary_tumor_volume
def compute_binary_tumor_volume(
mask_data:Image
):
Compute the volume of the tumor in milliliters (ml).
Post-processing
refine_binary_pred_mask
def refine_binary_pred_mask(
pred_mask, remove_size:(<class 'int'>, <class 'float'>)=None, percentage:float=0.2, verbose:bool=False
)->Tensor:
Removes small objects from the predicted binary mask.
Args: pred_mask: The predicted mask from which small objects are to be removed. remove_size: The size under which objects are considered ‘small’. percentage: The percentage of the remove_size to be used as threshold. Defaults to 0.2. verbose: If True, print the number of components. Defaults to False.
Returns: The processed mask with small objects removed.
keep_largest
def keep_largest(
pred_mask:Tensor
)->Tensor:
Keep only the largest connected component in a binary mask.
Args: pred_mask: Binary prediction mask tensor.
Returns: Binary mask with only the largest connected component.
Gradio
gradio_image_classifier
def gradio_image_classifier(
file_obj, learn, apply_reorder, target_spacing
):
Predict on images using exported learner and return the result as a dictionary.